On compact finite differences for the Poisson equation

Peter Arbenz, IT4I Ostrava/ETH Zurich

Talk at TU Ostrava, September 3, 2020

Outline

Introduction

1D Poisson problems

2D Poisson problems

3D Poisson problems

Conclusions

Motivation from beam dynamics

1. Vlasov-Poisson formulation for particle evolution

- In physical devices like accelerators $10^{9} \ldots 10^{14}$ (or more) charged particles are accelerated in electric fields.
- Instead of computing with individual particles one considers particle density $f(\mathbf{x}, \mathbf{v}, t)$ in phase space (position-velocity (\mathbf{x}, \mathbf{v}) space).
- Vlasov equation describes the evolving particle density

$$
\frac{d f}{d t}=\partial_{t} f+\mathbf{v} \cdot \nabla_{\mathbf{x}} f+\frac{q}{m_{0}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f=0
$$

where \mathbf{E} and \mathbf{B} are electric and magnetic fields, respectively.

- The charged particles are 'pushed' by Newton's law

$$
\frac{d \mathbf{x}(t)}{d t}=\mathbf{v}, \quad \frac{d \mathbf{v}(t)}{d t}=\frac{q}{m_{0}}(\mathbf{E}+\mathbf{v} \times \mathbf{B}) .
$$

Motivation from beam dynamics (cont.)

- The determination of \mathbf{E} and \mathbf{B} is done in the co-moving Lorentz frame where $\hat{\mathbf{B}} \approx \mathbf{0}$ and

$$
\hat{\mathbf{E}}=-\nabla \hat{\phi},
$$

where the electrostatic potential $\hat{\phi}$ is the solution of the Poisson problem

$$
\begin{equation*}
-\Delta \hat{\phi}(\mathbf{x})=\frac{\hat{\rho}(\mathbf{x})}{\varepsilon_{0}} \tag{1}
\end{equation*}
$$

equipped with appropriate boundary conditions.

- The charge densities ρ is proportional to the particle density.

Motivation from beam dynamics (cont.)

2. Particle-in-cell (PIC) method in N-body Simulations

- Interpolate individual particle charges to a rectangular grid
- Discretize the Poisson equation by finite differences on the rectangular grid

- This leads to a system of linear equations

$$
\begin{equation*}
\mathbf{A x}=\mathbf{b} \tag{2}
\end{equation*}
$$

b denotes the interpolated charge densities at the mesh points.

- Solve the Poisson equation on the mesh in a Lorentz frame
- $\mathcal{O}(n \log n)$ operations needed provided that the domain is rectangular.

Purpose of the talk

- Poisson equation on rectangular domains often solved by finite differences (5-point stencil).
Ditto in 3D with the 7-point stencil.
- These methods converge with $\mathcal{O}\left(h^{2}\right)$ in the mesh width h.
- Higher orders of accuracy requires bigger stencils or more brain.
- Higher orders of accuracy lead to (much) smaller linear systems of equations for the same accuracy.
- We discuss how to get fourth order compact finite difference schemes.
- Emphasis is on rectangular grids and on fast (FFT-based) Poisson solvers.

References

1. L. Collatz. Numerische Behandlung von Differentialgleichungen. Springer, Berlin-Heidelberg, 1951. (\longrightarrow Mehrstellenmethode)
2. R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, 2007.
3. W. F. Spotz and G. F. Carey. A high-order compact formulation for the 3D Poisson equation. Numer. Methods Partial Differ. Equations, 12:235-243, 1996.
4. S. O. Settle, C. C. Douglas, I. Kim, and D. Sheen. On the derivation of highest-order compact finite difference schemes for the one- and two-dimensional Poisson equation with Dirichlet boundary conditions. SIAM J. Numer. Anal., 51:2470-2490, 2013.
5. E. Deriaz. Compact finite difference schemes of arbitrary order for the Poisson equation in arbitrary dimensions. BIT Numer. Math., 60:199-233, 2020.

The 1D case: problem statement

- Interval $I=(0, a)$
- Poisson equation:

$$
-u^{\prime \prime}(x)=f(x), \quad 0<x<a, \quad u(0)=u(a)=0
$$

- Equidistant mesh $0=x_{0}<x_{1}<\cdots<x_{n}<x_{n+1}=a$.
- Mesh width $h=x_{j}-x_{j-1}=a /(n+1)$.
- Approximation $u_{j} \approx u\left(x_{j}\right)$.
- Approximate Poisson equation by

$$
\begin{equation*}
\frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=f\left(x_{j}\right), \quad 1 \leq j \leq n . \tag{3}
\end{equation*}
$$

The 1D case: linear system

The n equations in (3) can be collected in matrix equation

$$
\frac{1}{h^{2}} \boldsymbol{T}_{n} \boldsymbol{u}=\frac{1}{h^{2}}\left(\begin{array}{rrrrr}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right)\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n-1} \\
u_{n}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{1}\right) \\
f\left(x_{2}\right) \\
\vdots \\
f\left(x_{n-1}\right) \\
f\left(x_{n}\right)
\end{array}\right]=\boldsymbol{f}
$$

$\boldsymbol{T}_{n} \in \mathbb{R}^{n \times n}$ has the spectral decomposition

$$
\begin{equation*}
\boldsymbol{T}_{n}=\boldsymbol{Q}_{n} \boldsymbol{\Lambda}_{n} \boldsymbol{Q}_{n}^{T} \tag{4}
\end{equation*}
$$

with diagonal $\boldsymbol{\Lambda}_{n}$

$$
\begin{equation*}
\boldsymbol{\Lambda}_{n}=\operatorname{diag}\left(\lambda_{1}^{(n)}, \ldots, \lambda_{n}^{(n)}\right), \quad \lambda_{k}^{(n)}=4 \sin ^{2} \frac{k \pi}{2(n+1)} \tag{5}
\end{equation*}
$$

The 1D case: linear system (cont.)

\boldsymbol{Q}_{n} is orthogonal, i.e., $\boldsymbol{Q}_{n}^{-1}=\boldsymbol{Q}_{n}^{T}$, with elements

$$
q_{j k}=\left(\frac{2}{n+1}\right)^{1 / 2} \sin \frac{j k \pi}{n+1} .
$$

Multiplying with \boldsymbol{Q}_{n} or \boldsymbol{Q}_{n}^{T} is related to the Fourier transform.
If n is chosen properly then the Fast Sine Transform (\sim Fast Fourier Transform) can be employed to solve (3).

This does not make much sense in the 1D case, since the direct solution (Gaussian elimination) costs only $\mathcal{O}(n)$ flops.

The 1D case: local truncation error

The local truncation error is obtained by plugging the exact solution in the FD formula,

$$
\frac{-u(x-h)+2 u(x)-u(x+h)}{h^{2}}-f(x)=\tau(x ; h)
$$

The 1D case: local truncation error (cont.)

A Taylor series expansion gives

$$
\begin{aligned}
u\left(x_{j-1}\right) & -2 u\left(x_{j}\right)+u\left(x_{j+1}\right) \\
& =u\left(x_{j}\right)-h u^{\prime}\left(x_{j}\right)+\frac{h^{2}}{2} u^{\prime \prime}\left(x_{j}\right)-\frac{h^{3}}{6} u^{\prime \prime \prime}\left(x_{j}\right)+\frac{h^{4}}{24} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\cdots \\
& -2 u\left(x_{j}\right) \\
& +u\left(x_{j}\right)+h u^{\prime}\left(x_{j}\right)+\frac{h^{2}}{2} u^{\prime \prime}\left(x_{j}\right)+\frac{h^{3}}{6} u^{\prime \prime \prime}\left(x_{j}\right)+\frac{h^{4}}{24} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\cdots \\
& =h^{2} u^{\prime \prime}\left(x_{j}\right)+\frac{h^{4}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{6}\right)
\end{aligned}
$$

The 1D case: local truncation error (cont.)

A Taylor series expansion gives

$$
\begin{aligned}
u\left(x_{j-1}\right) & -2 u\left(x_{j}\right)+u\left(x_{j+1}\right) \\
& =h^{2} u^{\prime \prime}\left(x_{j}\right)+\frac{h^{4}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{6}\right)
\end{aligned}
$$

The 1D case: local truncation error (cont.)

A Taylor series expansion gives

$$
\begin{aligned}
u\left(x_{j-1}\right) & -2 u\left(x_{j}\right)+u\left(x_{j+1}\right) \\
& =h^{2} u^{\prime \prime}\left(x_{j}\right)+\frac{h^{4}}{12} u^{\prime \prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{6}\right)
\end{aligned}
$$

or, using $-u^{\prime \prime}(x)=f(x)$,

$$
\begin{equation*}
\frac{-u\left(x_{j-1}\right)+2 u\left(x_{j}\right)-u\left(x_{j+1}\right)}{h^{2}}=f\left(x_{j}\right) \underbrace{-\frac{h^{2}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{4}\right)}_{\tau\left(x_{j}\right)} \tag{6}
\end{equation*}
$$

The 1D case: global error

$$
\begin{align*}
\frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}} & =f\left(x_{j}\right) \tag{7}\\
\frac{-u\left(x_{j-1}\right)+2 u\left(x_{j}\right)-u\left(x_{j+1}\right)}{h^{2}} & =-u^{\prime \prime}\left(x_{j}\right)+\tau\left(x_{j}\right) . \tag{8}
\end{align*}
$$

Subtracting (7) from (8) we get for the error $e\left(x_{j}\right)=u\left(x_{j}\right)-u_{j}$

$$
h^{-2} \boldsymbol{T}_{\boldsymbol{n}} \boldsymbol{e}=\boldsymbol{\tau}
$$

So, the L_{2}-error behaves like the local truncation error since

$$
\left\|h^{2} \boldsymbol{T}_{n}^{-1}\right\|_{2}<\frac{a^{2}}{8} \quad \text { for all } n
$$

$8 / a^{2}$ is a lower bound for the smallest eigenvalue of $h^{-2} \boldsymbol{T}_{n}$.

The 1D case: Improving accuracy

1. Use longer stencil

$$
\frac{1}{12 h^{2}}\left(-u_{j-2}+16 u_{j-1}-30 u_{j}+16 u_{j+1}-u_{j+2}\right)=f\left(x_{j}\right)
$$

The 1D case: Improving accuracy

1. Use longer stencil

$$
\frac{1}{12 h^{2}}\left(-u_{j-2}+16 u_{j-1}-30 u_{j}+16 u_{j+1}-u_{j+2}\right)=f\left(x_{j}\right)
$$

2. Closer look at truncation error

$$
\frac{-u\left(x_{j-1}\right)+2 u\left(x_{j}\right)-u\left(x_{j+1}\right)}{h^{2}}=-u^{\prime \prime}\left(x_{j}\right)+\tau\left(x_{j}\right)
$$

The 1D case: Improving accuracy

1. Use longer stencil

$$
\frac{1}{12 h^{2}}\left(-u_{j-2}+16 u_{j-1}-30 u_{j}+16 u_{j+1}-u_{j+2}\right)=f\left(x_{j}\right)
$$

2. Closer look at truncation error

$$
\frac{-u\left(x_{j-1}\right)+2 u\left(x_{j}\right)-u\left(x_{j+1}\right)}{h^{2}}=-u^{\prime \prime}\left(x_{j}\right)-\frac{h^{2}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{4}\right)
$$

The 1D case: Improving accuracy

1. Use longer stencil

$$
\frac{1}{12 h^{2}}\left(-u_{j-2}+16 u_{j-1}-30 u_{j}+16 u_{j+1}-u_{j+2}\right)=f\left(x_{j}\right)
$$

2. Closer look at truncation error

$$
\frac{-u\left(x_{j-1}\right)+2 u\left(x_{j}\right)-u\left(x_{j+1}\right)}{h^{2}}=-u^{\prime \prime}\left(x_{j}\right)-\frac{h^{2}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{4}\right)
$$

Replace finite difference stencil by

$$
\begin{equation*}
\frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=f\left(x_{j}\right)+\frac{h^{2}}{12} f^{\prime \prime}\left(x_{j}\right) \tag{9}
\end{equation*}
$$

The 1D case: Improving accuracy

1. Use longer stencil

$$
\frac{1}{12 h^{2}}\left(-u_{j-2}+16 u_{j-1}-30 u_{j}+16 u_{j+1}-u_{j+2}\right)=f\left(x_{j}\right)
$$

2. Closer look at truncation error

$$
\frac{-u\left(x_{j-1}\right)+2 u\left(x_{j}\right)-u\left(x_{j+1}\right)}{h^{2}}=-u^{\prime \prime}\left(x_{j}\right)-\frac{h^{2}}{12} u^{\prime \prime \prime \prime}\left(x_{j}\right)+\mathcal{O}\left(h^{4}\right)
$$

Replace finite difference stencil by

$$
\begin{equation*}
\frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=f\left(x_{j}\right)+\frac{h^{2}}{12} f^{\prime \prime}\left(x_{j}\right) \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{-u_{j-1}+2 u_{j}-u_{j+1}}{h^{2}}=f\left(x_{j}\right)+\frac{1}{12}\left(f\left(x_{j-1}\right)-2 f\left(x_{j}\right)+f\left(x_{j+1}\right)\right) \tag{10}
\end{equation*}
$$

The 1D case: Matlab demo

generate_convergence_plot1D

The 2D case: problem statement

- Rectangle $\Omega=\left(0, a_{x}\right) \times\left(0, a_{y}\right)$
- Poisson equation

$$
\begin{equation*}
-\nabla^{2} u(x, y)=f(x, y) \quad \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{11}
\end{equation*}
$$

- Rectangular mesh: $n_{x}+2 \times n_{y}+2$ grid points (incl. boundary)
- Mesh widths: $h_{x}=a_{x} /\left(n_{x}+1\right)$ and $h_{y}=a_{y} /\left(n_{y}+1\right)$
- 5-point stencil is most used approximation of the Laplacian
- Approximation $u_{i j} \approx u\left(x_{i}, y_{j}\right)$
- Approximate Poisson equation by

$$
\begin{equation*}
\frac{-u_{i-1, j}+2 u_{i j}-u_{i+1, j}}{h_{x}^{2}}+\frac{-u_{i, j-1}+2 u_{i j}-u_{i, j+1}}{h_{y}^{2}}=f\left(x_{i}, y_{j}\right) \tag{12}
\end{equation*}
$$

for $0<i \leq n_{x}, 0<j \leq n_{y}$.

The 2D case: stencil

Often, the discretized Poisson equation is displayed as a stencil

$$
-\nabla_{5}^{2} u(x, y)=\overbrace{-\frac{1}{h_{x}^{2}}}^{\frac{2}{h_{x}^{2}}}+\frac{\frac{2}{h_{y}^{2}}}{-\frac{1}{h_{y}^{2}}} \overbrace{\bullet}^{-\frac{1}{h_{x}^{2}}} \odot u(x, y)=f(x, y)
$$

which shows nicely the five involved grid points with their weights.

The 2D case: linear system

Collect the $u_{i j} / f\left(x_{i}, y_{j}\right)$ in a vector $\boldsymbol{u}, \boldsymbol{f} \in \mathbb{R}^{n_{x} n_{y}}$.
The $n_{x} n_{y}$ equations in (12) can be collected in matrix form

$$
\begin{equation*}
\left(\frac{1}{h_{x}^{2}} \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{T}_{n_{x}}+\frac{1}{h_{y}^{2}} \boldsymbol{T}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right) \boldsymbol{u}=\boldsymbol{f} \tag{13}
\end{equation*}
$$

where \otimes denotes Kronecker product. Using the spectral decomposition (4) of \boldsymbol{T}_{n}, (13) can be written as

$$
\begin{equation*}
\left(\boldsymbol{Q}_{n_{y}} \otimes \boldsymbol{Q}_{n_{x}}\right)\left(\frac{1}{h_{x}^{2}} \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{\Lambda}_{n_{x}}+\frac{1}{h_{y}^{2}} \boldsymbol{\Lambda}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right)\left(\boldsymbol{Q}_{n_{y}}^{T} \otimes \boldsymbol{Q}_{n_{x}}^{T}\right) \boldsymbol{u}=\boldsymbol{f} \tag{14}
\end{equation*}
$$

Matrix in the middle is diagonal.
With $n=n_{x} n_{y}$, (14) can be solved with $\mathcal{O}(n \log n)$ flops, if FFT is applicable.

The 2D case: truncation error

Local truncation error for 5-point stencil is
$-\nabla_{5}^{2} u(x, y)-f(x, y)=-\frac{h_{x}^{2}}{12} \partial_{x}^{4} u(x, y)-\frac{h_{y}^{2}}{12} \partial_{y}^{4} u(x, y)+\mathcal{O}\left(h_{x}^{4}+h_{y}^{4}\right)$.

Can we do better in 2D as well?

The 2D case: improving accuracy

Define a 9-point (compact) stencil

$$
\begin{aligned}
\nabla_{9}^{2} u_{i, j} & \equiv \nabla_{5}^{2} u_{i, j}+\frac{1}{12}\left(4 u_{i, j}-2\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right)\right. \\
& \left.+u_{i+1, j+1}+u_{i-1, j+1}+u_{i+1, j-1}+u_{i-1, j-1}\right)\left(\frac{1}{h_{x}^{2}}+\frac{1}{h_{y}^{2}}\right) .
\end{aligned}
$$

For the local truncation error of the Poisson equation we get

$$
\begin{aligned}
-\nabla_{9}^{2} u(x, y)-f(x, y) & =-\frac{h_{x}^{2}}{12}\left(\partial_{x}^{4} u(x, y)+\partial_{x}^{2} \partial_{y}^{2} u(x, y)\right) \\
& -\frac{h_{y}^{2}}{12}\left(\partial_{x}^{2} \partial_{y}^{2} u(x, y)+\partial_{y}^{4} u(x, y)\right)+\mathcal{O}\left(\left(h_{x}^{2}+h_{y}^{2}\right)^{2}\right)
\end{aligned}
$$

which does not look like an improvement w.r.t. the 5-pt stencil.

The 2D case: improving accuracy (cont.)

BUT

$$
\begin{aligned}
-\nabla_{g}^{2} u(x, y)-f(x, y) & =-\frac{h_{x}^{2}}{12}\left(\partial_{x}^{4} u(x, y)+\partial_{x}^{2} \partial_{y}^{2} u(x, y)\right) \\
& -\frac{h_{y}^{2}}{12}\left(\partial_{x}^{2} \partial_{y}^{2} u(x, y)+\partial_{y}^{4} u(x, y)\right)+\mathcal{O}\left(\left(h_{x}^{2}+h_{y}^{2}\right)^{2}\right)
\end{aligned}
$$

The 2D case: improving accuracy (cont.)

BUT

$$
\begin{aligned}
-\nabla_{g}^{2} u(x, y)-f(x, y) & =-\frac{h_{x}^{2}}{12}\left(\partial_{x}^{4} u(x, y)+\partial_{x}^{2} \partial_{y}^{2} u(x, y)\right) \\
& -\frac{h_{y}^{2}}{12}\left(\partial_{x}^{2} \partial_{y}^{2} u(x, y)+\partial_{y}^{4} u(x, y)\right)+\mathcal{O}\left(\left(h_{x}^{2}+h_{y}^{2}\right)^{2}\right) \\
= & -\frac{h_{x}^{2}}{12}\left(\partial_{x}^{2}\left(\partial_{x}^{2} u(x, y)+\partial_{y}^{2} u(x, y)\right)\right) \\
& -\frac{h_{y}^{2}}{12}\left(\partial_{y}^{2}\left(\partial_{x}^{2} u(x, y)+\partial_{y}^{2} u(x, y)\right)\right)+\cdots
\end{aligned}
$$

The 2D case: improving accuracy (cont.)

BUT

$$
\begin{aligned}
-\nabla_{g}^{2} u(x, y)-f(x, y) & =-\frac{h_{x}^{2}}{12}\left(\partial_{x}^{4} u(x, y)+\partial_{x}^{2} \partial_{y}^{2} u(x, y)\right) \\
& -\frac{h_{y}^{2}}{12}\left(\partial_{x}^{2} \partial_{y}^{2} u(x, y)+\partial_{y}^{4} u(x, y)\right)+\mathcal{O}\left(\left(h_{x}^{2}+h_{y}^{2}\right)^{2}\right) \\
= & -\frac{h_{x}^{2}}{12}\left(\partial_{x}^{2}\left(\partial_{x}^{2} u(x, y)+\partial_{y}^{2} u(x, y)\right)\right) \\
& -\frac{h_{y}^{2}}{12}\left(\partial_{y}^{2}\left(\partial_{x}^{2} u(x, y)+\partial_{y}^{2} u(x, y)\right)\right)+\cdots \\
= & -\frac{h_{x}^{2}}{12} \partial_{x}^{2} \nabla^{2} u(x, y)-\frac{h_{y}^{2}}{12} \partial_{y}^{2} \nabla^{2} u(x, y)+\cdots
\end{aligned}
$$

The 2D case: improving accuracy (cont.)

BUT

$$
\begin{aligned}
-\nabla_{9}^{2} u(x, y)-f(x, y) & =-\frac{h_{x}^{2}}{12}\left(\partial_{x}^{4} u(x, y)+\partial_{x}^{2} \partial_{y}^{2} u(x, y)\right) \\
& -\frac{h_{y}^{2}}{12}\left(\partial_{x}^{2} \partial_{y}^{2} u(x, y)+\partial_{y}^{4} u(x, y)\right)+\mathcal{O}\left(\left(h_{x}^{2}+h_{y}^{2}\right)^{2}\right) \\
= & -\frac{h_{x}^{2}}{12}\left(\partial_{x}^{2}\left(\partial_{x}^{2} u(x, y)+\partial_{y}^{2} u(x, y)\right)\right) \\
& -\frac{h_{y}^{2}}{12}\left(\partial_{y}^{2}\left(\partial_{x}^{2} u(x, y)+\partial_{y}^{2} u(x, y)\right)\right)+\cdots \\
= & -\frac{h_{x}^{2}}{12} \partial_{x}^{2} \nabla^{2} u(x, y)-\frac{h_{y}^{2}}{12} \partial_{y}^{2} \nabla^{2} u(x, y)+\cdots \\
= & \frac{h_{x}^{2}}{12} \partial_{x}^{2} f(x, y)+\frac{h_{y}^{2}}{12} \partial_{y}^{2} f(x, y)+\mathcal{O}\left(\left(h_{x}^{2}+h_{y}^{2}\right)^{2}\right)
\end{aligned}
$$

The 2D case: improving accuracy (cont.)

If the second derivatives of f not available or too expensive to compute, replace them by finite differences:

A fourth order local truncation error is the best one can get in 2D by compact FD (Settle et al. SINUM 2013).

The 2D case: improving accuracy (cont.)

Truncation error with 4-th order terms exposed:

$$
\begin{aligned}
\tau(x, y)= & -\nabla_{9}^{2} u(x, y)-f(x, y)-\frac{h_{x}^{2}}{12} \partial_{x}^{2} f(x, y)-\frac{h_{y}^{2}}{12} \partial_{y}^{2} f(x, y)= \\
& -\frac{h_{x}^{4}}{720}\left(2 \partial_{x}^{6} u(x, y)+5 \partial_{x}^{4} \partial_{y}^{2} u(x, y)\right) \\
& -\frac{h_{x}^{2} h_{y}^{2}}{144}\left(\partial_{x}^{4} \partial_{y}^{2} u(x, y)+\partial_{x}^{2} \partial_{y}^{4} u(x, y)\right) \\
& -\frac{h_{y}^{4}}{720}\left(5 \partial_{x}^{2} \partial_{y}^{4} u(x, y)+2 \partial_{y}^{6} u(x, y)\right) \\
& +\mathcal{O}\left(\left(h_{x}^{2}+h_{y}^{2}\right)^{3}\right) .
\end{aligned}
$$

If grid is square ($h=h_{x}=h_{y}$) then the fourth order term can be expressed as $\frac{h^{4}}{360}\left(\nabla^{4} f+2 \partial_{x}^{2} \partial_{y}^{2} f\right)$.

The 2D case: linear system for compact FD

The matrix form of the stencil before is

$$
\begin{aligned}
\left(\frac{1}{h_{x}^{2}} \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{T}_{n_{x}}+\frac{1}{h_{y}^{2}} \boldsymbol{T}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right. & \left.-\frac{1}{12}\left(\frac{1}{h_{x}^{2}}+\frac{1}{h_{y}^{2}}\right) \boldsymbol{T}_{n_{y}} \otimes \boldsymbol{T}_{n_{x}}\right) \boldsymbol{u} \\
& =\left(\boldsymbol{I}-\frac{1}{12}\left(\boldsymbol{I}_{n_{y}} \otimes \boldsymbol{T}_{n_{x}}+\boldsymbol{T}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right)\right) \boldsymbol{f}
\end{aligned}
$$

Using the spectral decompositions of the matrices $\boldsymbol{T}_{n_{x}}, \boldsymbol{T}_{n_{y}}$ gives

$$
\begin{aligned}
\boldsymbol{u}=\left(\boldsymbol{Q}_{n_{y}} \otimes \boldsymbol{Q}_{n_{x}}\right) & \left(h_{y}^{2} \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{\Lambda}_{n_{x}}+h_{x}^{2} \boldsymbol{\Lambda}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}-\frac{h_{x}^{2}+h_{y}^{2}}{12} \boldsymbol{\Lambda}_{n_{y}} \otimes \boldsymbol{\Lambda}_{n_{x}}\right)^{-1} \\
& \times h_{x}^{2} h_{y}^{2}\left(\boldsymbol{I}-\frac{1}{12}\left(\boldsymbol{I}_{n_{y}} \otimes \boldsymbol{\Lambda}_{n_{x}}+\boldsymbol{\Lambda}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right)\right)\left(\boldsymbol{Q}_{n_{y}}^{T} \otimes \boldsymbol{Q}_{n_{x}}^{T}\right) \boldsymbol{f}
\end{aligned}
$$

In the middle there is again a diagonal matrix.

The 2D case: numerical example

$$
\begin{gathered}
a_{x}=0.9, \quad a_{y}=1.1 \\
u(x, y)=\sin \left(\pi x / a_{x}\right) \sin \left(3 \pi y / a_{y}\right) \\
f(x, y)=-\nabla^{2} u(x, y)=\pi^{2}\left(\frac{1}{a_{x}^{2}}+\frac{9}{a_{y}^{2}}\right) \sin \frac{\pi x}{a_{x}} \cdot \sin \frac{3 \pi y}{a_{y}} .
\end{gathered}
$$

In the Matlab code the approximation error is plotted versus the mesh width $h \sim 1 / n$. The norm of the error is computed as

$$
\|\boldsymbol{e}\|=\sqrt{\frac{1}{n_{x} n_{y}} \sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{y}}\left|u_{i, j}-u\left(x_{i}, y_{j}\right)\right|^{2}} .
$$

In this example we have $n=n_{x}=n_{y}$.

The 2D case: Matlab demo

generate_convergence_plot2D

The 3D case: problem statement

- Cuboid $\Omega=\left(0, a_{x}\right) \times\left(0, a_{y}\right) \times\left(0, a_{z}\right)$
- Poisson equation

$$
\begin{equation*}
-\nabla^{2} u(x, y, z)=f(x, y, z) \quad \text { in } \Omega, \quad u=0 \text { on } \partial \Omega . \tag{15}
\end{equation*}
$$

- Rectangular mesh: $\left(n_{x}+2\right) \times\left(n_{y}+2\right) \times\left(n_{z}+2\right)$ grid points
- Mesh widths: h_{x}, h_{y}, h_{z}
- 7-point stencil is standard approximation of the Laplacian
- Approximation $u_{i j} \approx u\left(x_{i}, y_{j}\right)$
- In interior $n_{x} n_{y} n_{z}$ grid points approximate Poisson eq. by

$$
\begin{aligned}
\frac{-u_{i-1, j, k}+2 u_{i j k}-u_{i+1, j, k}}{h_{x}^{2}}+\frac{-u_{i, j-1, k}+2 u_{i j k}-u_{i, j+1, k}}{h_{y}^{2}} \\
+\frac{-u_{i, j, k-1}+2 u_{i j k}-u_{i, j, k+1}}{h_{z}^{2}}=f\left(x_{i}, y_{j}, z_{k}\right)
\end{aligned}
$$

The 3D case: linear system for the 7-point stencil

Collect values $u_{i j k}, f\left(x_{i}, y_{j}, z_{k}\right)$ in vectors $\boldsymbol{u}, \boldsymbol{f} \in \mathbb{R}^{n_{x} n_{y} n_{z}}$, similarly as in the 2D case. Then, the matrix form of above equations is

$$
\left(\frac{1}{h_{x}^{2}} \boldsymbol{I}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{T}_{n_{x}}+\frac{1}{h_{y}^{2}} \boldsymbol{I}_{n_{z}} \otimes \boldsymbol{T}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}+\frac{1}{h_{z}^{2}} \boldsymbol{T}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right) \boldsymbol{u}=\boldsymbol{f} .
$$

Using the spectral decomposition of the \boldsymbol{T} 's this becomes

$$
\left(\boldsymbol{Q}_{n_{z}} \otimes \boldsymbol{Q}_{n_{y}} \otimes \boldsymbol{Q}_{n_{x}}\right)
$$

$$
\begin{aligned}
& \left(\frac{1}{h_{x}^{2}} \boldsymbol{I}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{\Lambda}_{n_{x}}+\frac{1}{h_{y}^{2}} \boldsymbol{I}_{n_{z}} \otimes \boldsymbol{\Lambda}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}+\frac{1}{h_{z}^{2}} \boldsymbol{\Lambda}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right) \\
& \quad\left(\boldsymbol{Q}_{n_{z}}^{T} \otimes \boldsymbol{Q}_{n_{y}}^{T} \otimes \boldsymbol{Q}_{n_{x}}^{T}\right) \boldsymbol{u}=\boldsymbol{f} .
\end{aligned}
$$

The diagonal matrix in the middle can be precomputed.

The 3D case: linear system for 4th order 19-point stencil

Cf. Spotz\&Carey

The 3D case: linear system for 4th order 19-point stencil (cont.)
The matrix form of this stencil is

$$
\begin{aligned}
&\left(\frac{1}{h_{x}^{2}} \boldsymbol{I}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{T}_{n_{x}}+\frac{1}{h_{y}^{2}} \boldsymbol{I}_{n_{z}} \otimes \boldsymbol{T}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}+\frac{1}{h_{z}^{2}} \boldsymbol{T}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right. \\
& \quad- \frac{1}{12}\left(\frac{1}{h_{x}^{2}}+\frac{1}{h_{y}^{2}}\right) \boldsymbol{I}_{n_{z}} \otimes \boldsymbol{T}_{n_{y}} \otimes \boldsymbol{T}_{n_{x}}-\frac{1}{12}\left(\frac{1}{h_{x}^{2}}+\frac{1}{h_{z}^{2}}\right) \boldsymbol{T}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{T}_{n} \\
&\left.\quad-\frac{1}{12}\left(\frac{1}{h_{y}^{2}}+\frac{1}{h_{z}^{2}}\right) \boldsymbol{T}_{n_{z}} \otimes \boldsymbol{T}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right) \boldsymbol{u} \\
&=\left(\boldsymbol{I}-\frac{1}{12}\left(\boldsymbol{I}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{T}_{n_{x}}+\boldsymbol{I}_{n_{z}} \otimes \boldsymbol{T}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}+\boldsymbol{T}_{n_{z}} \otimes \boldsymbol{I}_{n_{y}} \otimes \boldsymbol{I}_{n_{x}}\right)\right) \boldsymbol{f} .
\end{aligned}
$$

Remark: Spotz\&Carey also give a $\mathcal{O}\left(h^{6}\right) 27$-pt stencil for the Laplacian that does not lead to a compact stencil for the Poisson equation, though.

The 3D case: numerical example

$$
\begin{gathered}
a_{x}=1.1, \quad a_{y}=1.0, \quad a_{z}=0.9 \\
f(x, y, z)=\pi^{2}\left(\frac{1}{a_{x}^{2}}+\frac{9}{a_{y}^{2}}+\frac{25}{a_{z}^{2}}\right) \sin \left(\frac{\pi x}{a_{x}}\right) \sin \left(\frac{3 \pi y}{a_{y}}\right) \sin \left(\frac{5 \pi z}{a_{z}}\right) . \\
u(x, y, z)=\sin \left(\pi x / a_{x}\right) \sin \left(3 \pi y / a_{y}\right) \sin \left(5 \pi z / a_{z}\right)
\end{gathered}
$$

in the Matlab code the approximation error is plotted versus the mesh width $h \sim 1 / n$. The norm of the error is computed as

$$
\|\boldsymbol{e}\|=\sqrt{\frac{1}{n_{x} n_{y} n_{z}} \sum_{i=1}^{n_{x}} \sum_{j=1}^{n_{y}} \sum_{k=1}^{n_{z}}\left|u_{i, j, k}-u\left(x_{i}, y_{j}, z_{k}\right)\right|^{2}}
$$

In this example we have $n=n_{x}=n_{y}=n_{z}$.

The 3D case: Matlab demo

generate_convergence_plot3D

Conclusions

- High-order methods can generate accurate solutions on coarse grids
- Solutions have to be smooth enough
- Matrices get denser as order increases, but we use its spectral decomposition and FFT
- Class of operators is limited, but Laplacian is fine
- In 3D 6th order is possible but the stencil for the right-hand side is not compact anymore
- To use compact FD inside other software, the (input) data has to be accurate

